Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Nucleic Acids Res ; 52(6): 2924-2941, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197240

RESUMO

Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.


Assuntos
Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/metabolismo
2.
mBio ; 14(5): e0164923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823629

RESUMO

IMPORTANCE: To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.


Assuntos
Magnetossomos , Magnetospirillum , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Bactérias/metabolismo
3.
J Biosci Bioeng ; 136(3): 253-260, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422334

RESUMO

Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.


Assuntos
Nanopartículas de Magnetita , Magnetossomos , Magnetospirillum , Óxido Ferroso-Férrico/química , Proteínas de Bactérias/metabolismo , Magnetossomos/genética , Magnetossomos/química , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Bactérias/metabolismo , Lipídeos/análise
4.
Chemosphere ; 330: 138739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088211

RESUMO

Magnetotactic bacteria (MTB) are receiving attention for heavy metal biotreatment due to their potential for biosorption with heavy metals and the capability of the magnetic recovery. In this study, we investigated the characteristics of Cr(VI) bioreduction and biosorption by an MTB isolate, Magnetospirillum gryphiswaldense MSR-1, which has a higher growth rate and wider reflexivity in culture conditions. Our results demonstrated that the MSR-1 strain could remove Cr(VI) up to the concentration of 40 mg L-1 and with an optimal activity at neutral pH conditions. The magnetosome synthesis existed regulatory mechanisms between Cr(VI) reduction and cell division. The addition of 10 mg L-1 Cr(VI) significantly inhibited cell growth, but the magnetosome-deficient strain, B17316, showed an average specific growth rate of 0.062 h-1 at the same dosage. Cr(VI) reduction examined by the heat-inactivated and resting cells demonstrated that the main mechanism for MSR-1 strain to reduce Cr(VI) was chromate reductase and adsorption, and magnetosome synthesis would enhance the chromate reductase activity. Finally, our results elucidated that the chromate reductase distributes diversely in multiple subcellular components of the MSR-1 cells, including extracellular, membrane-associated, and intracellular cytoplasmic activity; and expression of the membrane-associated chromate reductase was increased after the cells were pre-exposed by Cr(VI).


Assuntos
Magnetossomos , Magnetospirillum , Magnetossomos/metabolismo , Magnetossomos/ultraestrutura , Cromatos/metabolismo , Magnetospirillum/metabolismo , Magnetospirillum/ultraestrutura
5.
ACS Appl Mater Interfaces ; 15(5): 7023-7029, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700926

RESUMO

Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.


Assuntos
Óxido Ferroso-Férrico , Magnetospirillum , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Descontaminação , Magnetospirillum/metabolismo , Robótica/métodos
6.
ACS Appl Mater Interfaces ; 15(1): 566-577, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563339

RESUMO

Magnetotactic bacteria Magnetospirillum magneticum AMB-1 have been cultured using three different media: magnetic spirillum growth medium with Wolfe's mineral solution (MSGM + W), magnetic spirillum growth medium without Wolfe's mineral solution (MSGM - W), and flask standard medium (FSM). The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40-45 nm, but FSM bacteria present slightly longer subchains. In MSGM + W bacteria, Co2+ ions present in the medium substitute Fe2+ ions in octahedral positions with a total Co doping around 4-5%. In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM - W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM + W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey (∼105 K) and low temperature (∼40 K) transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner-Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria: below 35 mT, MSGM - W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM + W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate (SAR) of SAR/f ≈ 12 W g-1 kHz-1.


Assuntos
Hipertermia Induzida , Magnetossomos , Magnetospirillum , Magnetospirillum/química , Magnetospirillum/metabolismo , Magnetossomos/química , Fenômenos Magnéticos
7.
Brief Funct Genomics ; 22(1): 61-74, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36424838

RESUMO

Magnetotactic bacteria (MTB) are worth studying because of magnetosome biomineralization. Magnetosome biogenesis in MTB is controlled by multiple genes known as magnetosome-associated genes. Recent advances in bioinformatics provide a unique opportunity for studying functions of magnetosome-associated genes and networks that they are involved in. Furthermore, various types of bioinformatics analyses can also help identify genes associated with magnetosome biogenesis. To predict novel magnetosome-associated genes in the extended CtrA regulon, we analyzed expression data of Magnetospirillum magneticum AMB-1 in the GSE35625 dataset in NCBI GEO. We identified 10 potential magnetosome-associated genes using a combinational approach of differential expression analysis, Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, protein-protein interaction network analysis and weighted gene co-expression network analysis. Meanwhile, we also discovered and compared two co-expression modules that most known magnetosome-associated genes belong to. Our comparison indicated the importance of energy on regulating co-expression module structures for magnetosome biogenesis. At the last stage of our research, we predicted at least four real magnetosome-associated genes out of 10 potential genes, based on a comparison of evolutionary trees between known and potential magnetosome-associated genes. Because of the discovery of common subtrees that the stressed species are enriched in, we proposed a hypothesis that multiple types of environmental stress can trigger magnetosome evolution in different waters, and therefore its evolution can recur at different times in various locations on earth. Overall, our research provides useful information for identifying new MTB species and understanding magnetosome biogenesis.


Assuntos
Magnetossomos , Magnetospirillum , Magnetossomos/genética , Magnetossomos/metabolismo , Regulon/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Penicilinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(45): e2211228119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322742

RESUMO

Magnetic targeting is one of the most promising approaches for improving the targeting efficiency by which magnetic drug carriers are directed using external magnetic fields to reach their targets. As a natural magnetic nanoparticle (MNP) of biological origin, the magnetosome is a special "organelle" formed by biomineralization in magnetotactic bacteria (MTB) and is essential for MTB magnetic navigation to respond to geomagnetic fields. The magnetic targeting of magnetosomes, however, can be hindered by the aggregation and precipitation of magnetosomes in water and biological fluid environments due to the strong magnetic attraction between particles. In this study, we constructed a magnetosome-like nanoreactor by introducing MTB Mms6 protein into a reverse micelle system. MNPs synthesized by thermal decomposition exhibit the same crystal morphology and magnetism (high saturation magnetization and low coercivity) as natural magnetosomes but have a smaller particle size. The DSPE-mPEG-coated magnetosome-like MNPs exhibit good monodispersion, penetrating the lesion area of a tumor mouse model to achieve magnetic enrichment by an order of magnitude more than in the control groups, demonstrating great prospects for biomedical magnetic targeting applications.


Assuntos
Magnetossomos , Magnetospirillum , Nanopartículas , Neoplasias , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Magnetossomos/química , Bactérias Gram-Negativas/metabolismo , Nanopartículas/química , Campos Magnéticos , Neoplasias/metabolismo , Magnetospirillum/metabolismo
9.
Nat Commun ; 13(1): 5652, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163114

RESUMO

Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.


Assuntos
Magnetossomos , Magnetospirillum , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Magnéticos , Magnetossomos/genética , Magnetospirillum/genética , Magnetospirillum/metabolismo , Filogenia
10.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142217

RESUMO

Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.


Assuntos
Magnetossomos , Magnetospirillum , Proteínas de Bactérias/química , FMN Redutase/metabolismo , Óxido Ferroso-Férrico/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Lipídeos/análise , Lipossomos/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Proteínas de Membrana/metabolismo , NAD/metabolismo , Ubiquitinas/metabolismo
12.
ACS Appl Mater Interfaces ; 14(19): 22138-22150, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35508355

RESUMO

Biocatalysis in flow reactor systems is of increasing importance for the transformation of the chemical industry. However, the necessary immobilization of biocatalysts remains a challenge. We here demonstrate that biogenic magnetic nanoparticles, so-called magnetosomes, represent an attractive alternative for the development of nanoscale particle formulations to enable high and stable conversion rates in biocatalytic flow processes. In addition to their intriguing material characteristics, such as high crystallinity, stable magnetic moments, and narrow particle size distribution, magnetosomes offer the unbeatable advantage over chemically synthesized nanoparticles that foreign protein "cargo" can be immobilized on the enveloping membrane via genetic engineering and thus, stably presented on the particle surface. To exploit these advantages, we develop a modular connector system in which abundant magnetosome membrane anchors are genetically fused with SpyCatcher coupling groups, allowing efficient covalent coupling with complementary SpyTag-functionalized proteins. The versatility of this approach is demonstrated by immobilizing a dimeric phenolic acid decarboxylase to SpyCatcher magnetosomes. The functionalized magnetosomes outperform similarly functionalized commercial particles by exhibiting stable substrate conversion during a 60 h period, with an average space-time yield of 49.2 mmol L-1 h-1. Overall, our results demonstrate that SpyCatcher magnetosomes significantly expand the genetic toolbox for particle surface functionalization and increase their application potential as nano-biocatalysts.


Assuntos
Magnetossomos , Magnetospirillum , Nanopartículas , Biocatálise , Engenharia Genética , Magnetossomos/genética , Magnetospirillum/genética , Magnetospirillum/metabolismo
13.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628364

RESUMO

Biomineralization is an elaborate process that controls the deposition of inorganic materials in living organisms with the aid of associated proteins. Magnetotactic bacteria mineralize magnetite (Fe3O4) nanoparticles with finely tuned morphologies in their cells. Mms6, a magnetosome membrane specific (Mms) protein isolated from the surfaces of bacterial magnetite nanoparticles, plays an important role in regulating the magnetite crystal morphology. Although the binding ability of Mms6 to magnetite nanoparticles has been speculated, the interactions between Mms6 and magnetite crystals have not been elucidated thus far. Here, we show a direct adsorption ability of Mms6 on magnetite nanoparticles in vitro. An adsorption isotherm indicates that Mms6 has a high adsorption affinity (Kd = 9.52 µM) to magnetite nanoparticles. In addition, Mms6 also demonstrated adsorption on other inorganic nanoparticles such as titanium oxide, zinc oxide, and hydroxyapatite. Therefore, Mms6 can potentially be utilized for the bioconjugation of functional proteins to inorganic material surfaces to modulate inorganic nanoparticles for biomedical and medicinal applications.


Assuntos
Nanopartículas de Magnetita , Magnetospirillum , Adsorção , Proteínas de Bactérias/metabolismo , Biomineralização , Óxido Ferroso-Férrico/química , Magnetospirillum/metabolismo , Proteínas de Membrana/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110403

RESUMO

Magnetosomes are lipid-bound organelles that direct the biomineralization of magnetic nanoparticles in magnetotactic bacteria. Magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. However, the underlying mechanisms of magnetosome membrane growth regulation remain unclear. Using cryoelectron tomography, we systematically examined mutants with defects at various stages of magnetosome formation to identify factors involved in controlling membrane growth. We found that a conserved serine protease, MamE, plays a key role in magnetosome membrane growth regulation. When the protease activity of MamE is disrupted, magnetosome membrane growth is restricted, which, in turn, limits the size of the magnetite particles. Consistent with this finding, the upstream regulators of MamE protease activity, MamO and MamM, are also required for magnetosome membrane growth. We then used a combination of candidate and comparative proteomics approaches to identify Mms6 and MamD as two MamE substrates. Mms6 does not appear to participate in magnetosome membrane growth. However, in the absence of MamD, magnetosome membranes grow to a larger size than the wild type. Furthermore, when the cleavage of MamD by MamE protease is blocked, magnetosome membrane growth and biomineralization are severely inhibited, phenocopying the MamE protease-inactive mutant. We therefore propose that the growth of magnetosome membranes is controlled by a protease-mediated switch through processing of MamD. Overall, our work shows that, like many eukaryotic systems, bacteria control the growth and size of biominerals by manipulating the physical properties of intracellular organelles.


Assuntos
Proteínas de Bactérias/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Organelas/metabolismo , Serina Proteases/metabolismo , Óxido Ferroso-Férrico/metabolismo , Proteólise , Proteômica/métodos , Serina Endopeptidases/metabolismo
15.
J Mol Biol ; 434(5): 167423, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971672

RESUMO

The polar organizing protein Z (PopZ) forms a polar microdomain that is inaccessible to larger macromolecules such as ribosomes, and selectively sequesters proteins crucial for cell cycle control and polar morphogenesis in various Alphaproteobacteria. However, the in vivo architecture of this microdomain has remained elusive. Here, we analyzed the three-dimensional ultrastructural organization of the PopZ network in Magnetospirillum gryphiswaldense and Caulobacter crescentus by Volta phase plate cryo-electron tomography, which provides high spatial resolution and improved image contrast. Our results suggest that PopZ forms a porous network of disordered short, flexible, and branching filaments.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Magnetospirillum , Proteínas de Bactérias/química , Caulobacter crescentus/metabolismo , Microscopia Crioeletrônica , Magnetospirillum/metabolismo , Domínios Proteicos
16.
Nanoscale ; 13(48): 20396-20400, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34860229

RESUMO

Magnetite-binding proteins are in high demand for the functionalization of magnetic nanoparticles. Binding analysis of six previously uncharacterized proteins from the magnetotactic Deltaproteobacterium Desulfamplus magnetovallimortis BW-1 identified two new magnetite-binding proteins (Mad10, Mad11). These proteins can be utilized as affinity tags for the immobilization of recombinant fusion proteins to magnetite.


Assuntos
Deltaproteobacteria , Nanopartículas de Magnetita , Magnetossomos , Magnetospirillum , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Deltaproteobacteria/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo
17.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006654

RESUMO

Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.


Assuntos
Proteínas de Bactérias/biossíntese , Vias Biossintéticas , Magnetospirillum/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Filogenia
18.
BMC Microbiol ; 21(1): 65, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632118

RESUMO

BACKGROUND: Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the 'magnetosome island' (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of the MAI caused by neighboring gene content, the elimination of these regions and their substitution by a compact, minimal magnetosome expression cassette would be important for future analysis and engineering. In addition, the role of the MAI boundaries and adjacent regions are still unclear, and recent studies indicated that further auxiliary determinants for magnetosome biosynthesis are encoded outside the MAI. However, techniques for large-scale genome editing of magnetic bacteria are still limited, and the full complement of genes controlling magnetosome formation has remained uncertain. RESULTS: Here we demonstrate that an allelic replacement method based on homologous recombination can be applied for large-scale genome editing in M. gryphiswaldense. By analysis of 24 deletion mutants covering about 167 kb of non-redundant genome content, we identified genes and regions inside and outside the MAI irrelevant for magnetosome biosynthesis. A contiguous stretch of ~ 100 kb, including the scattered mam and mms6 operons, could be functionally substituted by a compact and contiguous ~ 38 kb cassette comprising all essential biosynthetic gene clusters, but devoid of interspersing irrelevant or problematic gene content. CONCLUSIONS: Our results further delineate the genetic complement for magnetosome biosynthesis and will be useful for future large-scale genome editing and genetic engineering of magnetosome biosynthesis.


Assuntos
Genoma Bacteriano , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Família Multigênica , Genes Bacterianos , Genômica , Mutação , Óperon
19.
Microb Cell Fact ; 20(1): 35, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541381

RESUMO

BACKGROUND: Because of its tractability and straightforward cultivation, the magnetic bacterium Magnetospirillum gryphiswaldense has emerged as a model for the analysis of magnetosome biosynthesis and bioproduction. However, its future use as platform for synthetic biology and biotechnology will require methods for large-scale genome editing and streamlining. RESULTS: We established an approach for combinatory genome reduction and generated a library of strains in which up to 16 regions including large gene clusters, mobile genetic elements and phage-related genes were sequentially removed, equivalent to ~ 227.6 kb and nearly 5.5% of the genome. Finally, the fragmented genomic magnetosome island was replaced by a compact cassette comprising all key magnetosome biosynthetic gene clusters. The prospective 'chassis' revealed wild type-like cell growth and magnetosome biosynthesis under optimal conditions, as well as slightly improved resilience and increased genetic stability. CONCLUSION: We provide first proof-of-principle for the feasibility of multiple genome reduction and large-scale engineering of magnetotactic bacteria. The library of deletions will be valuable for turning M. gryphiswaldense into a microbial cell factory for synthetic biology and production of magnetic nanoparticles.


Assuntos
Deleção de Genes , Genoma Bacteriano , Magnetossomos , Magnetospirillum , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo
20.
J Nanobiotechnology ; 19(1): 27, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468141

RESUMO

BACKGROUND: Magnetic nanoparticles such as magnetosomes modified with antibodies allow a high probability of their interaction with targets of interest. Magnetosomes biomineralized by magnetotactic bacteria are in homogeneous nanoscale size and have crystallographic structure, and high thermal and colloidal stability. Camelidae derived nanobodies (Nbs) are small in size, thermal stable, highly water soluble, easy to produce, and fusible with magnetosomes. We aimed to functionalize Nb-magnetosomes for the analysis of the insecticide fipronil. RESULTS: Three recombinant magnetotactic bacteria (CF, CF+ , and CFFF) biomineralizing magnetosomes with different abundance of Nbs displayed on the surface were constructed. Compared to magnetosomes from the wild type Magnetospirillum gryphiswaldense MSR-1, all of the Nb-magnetosomes biosynthesized by strains CF, CF+ , and CFFF showed a detectable level of binding capability to fipronil-horseradish peroxidase (H2-HRP), but none of them recognized free fipronil. The Nb-magnetosomes from CFFF were oxidized with H2O2 or a glutathione mixture consisting of reduced glutathione and oxidized glutathione in vitro and their binding affinity to H2-HRP was decreased, whereas that to free fipronil was enhanced. The magnetosomes treated with the glutathione mixture were employed to develop an enzyme-linked immunosorbent assay for the detection of fipronil in water samples, with average recoveries in a range of 78-101%. CONCLUSIONS: The economical and environmental-friendly Nb-magnetosomes biomineralized by the bacterial strain MSR-1 can be potentially applied to nanobody-based immunoassays for the detection of fipronil or nanobody-based assays in general.


Assuntos
Inseticidas/química , Magnetossomos , Magnetospirillum/metabolismo , Pirazóis/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Fermentação , Glutationa , Peróxido de Hidrogênio/metabolismo , Imunoensaio , Magnetospirillum/genética , Anticorpos de Cadeia Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...